LESSON PLAN

Subject:Mathematics

Topic: Properties of functions

Age of students: 16

Language level: B1, B2

<u>Time:</u> 40 min

Content aims

After completing the lesson, the student will be able to: Differentiate properties of functions. Determine domain and range of the function. Describe graphs of functions. Construct graphs of functions.

Language aims:

After completing the lesson, the student will be able to: Use new vocabulary within the topics. Interpret and communicate mathematics.

Pre-requisites:

- Properties of functions;
- Graphs of functions.

Materials: Worksheet "The common properties of the function".

Procedure steps:

- 1. Students fill in gaps in common properties of the function.
- 2. Students read, listen and compare.
- 3. Students fill in gaps in properties of exponential function.
- 4. Students read, listen and compare.
- 5. Students fill in gaps in properties of function y = sinx.
- 6. Students read, listenand compare.
- 7. Students fill in gaps in properties of function y = ctgx.
- 8. Students read, listen and compare.

Attachment:

The common properties of the function

Fill in the gaps with the following words: even, odd, monotonic, zeros, odd, even, range, domain, periodic.

- The values that x may assume are called the of the function, and the values of y (that correspond to each value of x) are called the or value region.
- The function is calledin the interval if it is only increasing or decreasing in this interval.
- By theof function, we mean those values of x for which the function will equal 0.
- > Function y = f(x) is calledif equality f(-x) = f(x) is true for all arguments from the domain of the function.
- Function y = f(x) is calledif equality f(-x) = -f(x) is true for all arguments from the domain of the function.
- If, for all numbers x, the value of a function at x + p is equal to the value at x (f(x + p) = f(x)) then we say that the function isand has period p.
- The graph of thefunction is symmetric with respect to y-axis, but the graph of thefunction is symmetric with respect to zero.

The properties of exponential function $y = a^x$, a > 0, $a \neq 1$.

To sketch the graph of the function $y = a^x$ you have to revise the following properties of that function:

- 1) The domain of the function is $D(a^x) = \dots$
- 2) The range of the function is $E(a^x) = \dots$
- 3) The function is because the equalities f(-x) = -f(x) and f(-x) = f(x) are not true for all the $x \in D(y)$. That is

	why	its	gra	ph	is	symmetric	•••••		with	respect	to	
				•••••	•••••	.,		with	n re	espect	to	
4) The function $y = a^x$ is monotonic:												
			•	It	is	increasing	in	interval	•••••	•••••	if	
			•	It	is	decreasing	in	interval			if	
5) The function has zeros (when $a^x = 0$).												
The graph intersects y-axis in the point												

Sketch the graph for all the $x \in R$ taking into account the properties of the function $y = a^x$.

The properties of trigonometric function y = sin x

To sketch the graph of the function $y = \sin x$ over the interval $[-\pi; \pi]$ you have to revise the following properties of that function:

- 1) The domain of the function is $D(\sin x) = \dots$
- 2) The range of the function is $E(\sin x) = \dots$
- 3) The function is because the equality f(-x) = -f(x) is true for all the $x \in D(y)$. That is why its graph is symmetric with respect to
- 4) The function $y = \sin x$ is monotonic in following intervals:
 - It is increasing if
 - It is decreasing if
- 5) The function is periodic, its period is
- 6) The zeros of the function are (where $\sin x = 0$).

The graph intersects y-axis in the points

7) The maximum value of the function is when x =
And the minimum value of the function is
when x =

Draw the coordinate system, choosing one unit on y-axis as two squares and π radians on x-axis as 6 squares (because $\pi \approx 3$). Sketch the graph of the function y = sin x (sine curve) over the interval $[-\pi;\pi]$ using the revised properties of it.

Sketch the graph for all the $x \in R$ taking into account the properties of the function y = sin x.

Sketch the graph of the function $y = \cos x$ taking into account the equality $\cos x = \sin\left(\frac{\pi}{2} + x\right) = \sin\left(x + \frac{\pi}{2}\right).$

The properties of trigonometric function y = ctg x

To sketch the graph of the function $y = \operatorname{ctg} x$ over the interval $(0; \pi)$ you have to revise the following properties of that function:

- 1) The domain of the function is $D(\operatorname{ctg} x) = \dots$
- 2) The range of the function is $E(\operatorname{ctg} x) = \dots$
- 3) The function is because the equality f(-x) = -f(x) is true for all the $x \in D(y)$. That is why its graph is symmetric with respect to
- 4) The function y = ctg x is monotonic in following intervals:
 - It is increasing.
 - It is decreasing if

- 5) The function is periodic, its period is
- 6) The zeros of the function are (when ctg x = 0).

The graph intersects y-axis in the point

7) The function has maximum minimum value.

Draw the coordinate system, choosing one unit on y-axis as two squares and π radians on x-axis as 6 squares (because $\pi \approx 3$). Sketch the graph of the function y = ctg x (tangent curve) over the interval $(0;\pi)$ using the revised properties of it.

Sketch the graph for all the $x \in R$ taking into account the properties of the function y = ctg x.

